Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Sci Rep ; 11(1): 12787, 2021 06 17.
Article in English | MEDLINE | ID: covidwho-1275960

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that causes coronavirus disease 2019 (COVID-19) has resulted in a pandemic affecting the most vulnerable in society, triggering a public health crisis and economic collapse around the world. Effective treatments to mitigate this viral infection are needed. Since the eye is a route of virus entrance, we use an in vivo rat model of corneal inflammation as well as human corneal epithelial cells (HCEC) in culture challenged with IFNγ as models of the eye surface to study this issue. We explore ways to block the receptor-binding domain (RBD) of SARS-CoV-2 Spike (S) protein to angiotensin-converting enzyme 2 (ACE2). We found that the lipid mediators, elovanoid (ELV)-N32 or Resolvin D6-isomer (RvD6i) decreased the expression of the ACE2 receptor, furin, and integrins in damaged corneas or IFNγ-stimulated HCEC. There was also a concomitant decrease in the binding of Spike RBD with the lipid treatments. Using RNA-seq analysis, we uncovered that the lipid mediators also attenuated the expression of pro-inflammatoy cytokines participating in hyper-inflammation and senescence programming. Thus, the bioactivity of these lipid mediators will contribute to open therapeutic avenues to counteract virus attachment and entrance to the body.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Cellular Senescence/drug effects , Corneal Injuries/metabolism , Cytokines/metabolism , Docosahexaenoic Acids/analogs & derivatives , Docosahexaenoic Acids/pharmacology , Drug Discovery/methods , Protein Domains , Signal Transduction/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Animals , COVID-19/metabolism , COVID-19/virology , Cells, Cultured , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelium, Corneal/cytology , Humans , Lipoxins/pharmacology , Male , Protein Binding , Rats , Rats, Sprague-Dawley , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Virus Attachment/drug effects , Virus Internalization/drug effects
2.
Res Sq ; 2020 Aug 11.
Article in English | MEDLINE | ID: covidwho-725318

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that causes coronavirus disease 2019 (COVID-19) has resulted in a pandemic affecting the most vulnerable in society, triggering a public health crisis and economic tall around the world. Effective treatments to mitigate this virus infection are needed. Since the eye is a route of virus entrance, we use an in vivo rat model of corneal inflammation as well as human corneal epithelial cells in culture challenged with IFNγ to study this issue. We explore ways to block the receptor-binding domain (RBD) of SARS-CoV-2 spike (S) protein to angiotensin-converting enzyme 2 (ACE2). Elovanoid (ELV)-N32 or Resolvin D6-isomer (RvD6i), among the lipid mediators studied, consistently decreased the expression of the ACE2 receptor, furin, and integrins in damaged corneas or IFNγ stimulated human corneal epithelial cells (HCEC). There was also a concomitant decrease in the binding of spike RBD with the lipid treatments. Concurrently, we uncovered that the lipid mediators also attenuated the expression of cytokines that participate in the cytokine storm, hyper-inflammation and senescence programming. Thus, the bioactivity of these lipid mediators will contribute to opening therapeutic avenues for COVID-19 by counteracting virus attachment and entrance to the eye and other cells and the ensuing disruptions of homeostasis.

SELECTION OF CITATIONS
SEARCH DETAIL